For comparison, graphically estimated values of the extrapolated function from Table 1 and of the Viervoll \& Ögrim values are given together with the James \& Brindley, and Pauling \& Sherman values.

The principal difference between the new function and the old occurs at $\sin \theta / \lambda<0 \cdot 25$. Within this range the new values, even allowing for the ambiguity in extrapolation, are larger than the earlier results, and the mean values give an electron count of 12.78 e . within a radius of $2.66 \AA$ and 12.91 e. within a radius of $4 \cdot 1 \AA$. The Pauling \& Sherman values for $\sin \theta / \lambda<0.7$ are greater than the present results and indicate an even more compact electron-density distribution. Although the results of the present calculation are subject to error as no allowance for exchange was made in the original Hartree calculations, it is considered that these represent the best
scattering function for aluminium so far reported and that they will be useful until more accurate calculations of the Hartree distributions are made.

References

Cochran, W. (1953). Acta Cryst. 6, 812.
James, R. W. \& Brindley, G. W. (1931). Phil. Mag. (7), 12, 81 .

James, R. W., Brindley, G. W. \& Wood, R. G. (1929). Proc. Roy. Soc. A, 125, 40.
Jeffrey, G. A. \& Parry, G. S. (1955). J. Chem. Phys. 23, 406.
Pauling, L. \& Sherman, J. (1932). Z. Kristallogr. 81, 1.
Viervoll, H. \& Ögrim, O. (1949). Acta Cryst. 2, 277.

Acta Cryst. (1955). 8, 594
Precession camera settings. By D. Jerome Fisher, Department of Geology, University of Chicago, Chicago 37, Illinois, U.S.A.
(Received 4

This subject has been discussed recently (King, 1955) without knowledge of my earlier work. The use of King's Fig. 1 to get s values is far more time-consuming than reading from my simple charts (Fisher, 1952, p. 1053), which are similar to Buerger's (1944) Fig. 6, except that they are limited to s values between 25 and 45 mm ., the practicable range with standard equipment, and include additional $\bar{\mu}$ values. King's Fig. 1 is misleading in that it extends to values that are practically unobtainable. If, as I suggested, my four charts are put on a single graph (using different colors of ink for different $\bar{\mu}$ values) one can see at a glance the best combination to use for a given situation. Considering the lines on my charts as the central lines of narrow or wider bands, one can decide readily whether a narrow-opening annulus screen is needed in order to isolate a given level, a situation not uncommon when dealing with a crystal having a large unit cell.

Fig. 2 of King is an alignment chart for determining ε, the angular error in orientation. This problem, too, was handled by the writer in much simpler fashion by the use of a graph (Fisher, 1953, p. 400) based on measuring the distance (called $\delta-r$) from O^{\prime}, the center of precession for the film, to c, the center of the circle of precession. Moreover, the resolution of ε into corrected H arc and dial readings was treated, as were equation errors (Fisher, 1952, p. 1047). It should be noted that a rather similar graph appears as Fig. 4 of the Manual for the Use of the Buerger Precession Camera by the Charles Supper Company.

If the crystal furnishes reflections which show up reasonably strongly along the central horizontal line of the film (the 'dial axis' of the film), which means that an important reciprocal-lattice line is set parallel to the dial axis, which is very commonly the case, there is possible a very quick way of getting the goniometer head arcs adjusted exactly correctly. This technique is used only after the arcs are adjusted approximately correctly, and
is a modification of Buerger's (1944, p. 26) method. There is no need to go to the trouble of putting cassette dots on the film, as advocated by Evans, Tilden \& Adams (1949) and by Barnes, Przybylska \& Shore (1951); thus a small scrap piece of film may be used.

This method involves taking four $5-20 \mathrm{~min}$. exposures on the same film; to my knowledge this multiple-exposure method was first used for this purpose by Prof. Fritz Laves; after each exposure the film cassette is raised 2 or 3 mm . The first exposure might be made with the plane of the large arc 'horizontal' (parallel to the direct bean, or normal to the film cassette). The second would be with the dial rotated 180°; the third and fourth are with the dial at 90° and 270°. Unless the arcs are in exactly correct adjustment, the ends of the two upper Laue streaks (parallel to the dial axis) will not line up; the ends of the top streak will be a certain distance L to the right (or left) of those of the other streak; a similar situation will hold for the two lower streaks, yielding a distance S (for the case where the plane of the small arc is parallel the direct beam). If L and S are measured in millimetres, then $60 L / 4 \cdot 26$ equals the number of minutes the large arc must be adjusted, and $60 S / 4 \cdot 26$ gives the correction for the small arc, providing $\bar{\mu}$ equals 10°. If $\bar{\mu}$ equals 3°, the denominator is $4 \cdot 20$; both these assume $F=60 \mathrm{~mm}$. (see Fisher, 1952, p. 1045; D-values for $\varepsilon=1^{\circ}$).

References

Barnes, W. H., Przybylska, M. \& Shore, V. C. (1951). Amer. Min. 36, 432.
Buerger, M. J. (1944). The Photography of the Reciprocal Lattice. ASXRED Monograph No. 1.
Evans, H. T., Jr., Tilden, S. G. \& Adams, D. P. (1949). Rev. Sci. Instrum. 20, 157.

Fisher, D. J. (1952). Amer. Min. 37, 1036.
Fisher, D. J. (1953). Amer. Min. 38, 399.
King, M. V. (1955). Acta Cryst. 8, 53.

